A Two-Phase Free Boundary Problem for the Nonlinear Heat Equation

نویسندگان

  • S DE LILLO
  • M C SALVATORI
چکیده

Free Boundary Problems (FBP) motivated several studies in the past due to their relevance in applications [1 − 4]. From the mathematical point of view FBP are initial/ boundary value problems with a moving boundary [5]. The motion of the boundary is unknown (free boundary) and has to be determined together with the solution of the given partial differential equation. As a consequence the solution of FBP is in most cases equivalent to the solution of a nonlinear system. In recent studies [6 − 13] some free boundary problems for nonlinear evolution equations relevant in applications have been considered. In particular in [12] the solution of a one-phase Stefan Problem in nonlinear conduction is proved to exist and to be unique for short intervals of time. Furthemore a particular travelling wave solution was obtained. On the other hand two-phase Stefan Problems are more complicated than their one-phase counterparts and the theory is more elaborate. It is the aim of this paper to analyse a two–phase Stefan Problem for the nonlinear heat equation considered in [12]. Such an equation arises as a model of heat conduction in solid crystalline hydrogen [14]. It admits an exact linearization into the heat equation and therefore belongs to the class of C-integrable equations [16]. In the following we show that the two-phase Stefan Problem for the nonlinear heat equation admits a linearization into two distinct one-phase moving boundary problems for the linear heat equation. The two linearized problems are connected through a constraint on the relative motion of their moving boundaries. Such a constraint is induced by the free boundary motion of the nonlinear problem. We start our analysis with the following system of nonlinear heat equations

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Two-Phase Stefan Problem

In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.

متن کامل

Numerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets

In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra  integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...

متن کامل

A two-phase free boundary problem for a semilinear elliptic equation

In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary‎. ‎We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...

متن کامل

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004